Team S2T6 ROB 550 BotLab Report

Jonathan Heidegger, Ke Liu, Sibo Wang

Abstract—TIn the field of robotics, there is a growing need
for advanced technologies that enable robots to navigate
and interact with their environment in a more intelligent
and autonomous manner. This lab reports focus on the
development of algorithms and techniques for motion and
odometry, simultaneous localization and mapping (SLAM),
and path planning. These technologies are essential for
enabling robots to perform tasks such as localization,
navigation, and obstacle avoidance, which are critical for
a wide range of applications, including autonomous vehi-
cles, manufacturing and logistics, and search and rescue
operations.

I. INTRODUCTION

OTLAB discusses various applications of robotics

technology, including motion and odometry, simul-
taneous localization and mapping (SLAM), and path
planning.

The platform of the MBot 1 is an open hardware
platform for robotics education and research developed
at the University of Michigan. It is a skid steer robot
using a Raspberry Pico co-processor and Raspberry Pi
as primary processor. This platform allows for small
mobile robotics education and research among multiple
groups for an affordable price. This paper uses the Mbot
platform.

Motion and odometry involve the measurement and
analysis of the movement of a robot, which is important
for tasks such as localization and navigation. SLAM
refers to the process of creating a map of an unknown
environment while simultaneously determining the loca-
tion of the robot within that environment. Path planning
involves the development of algorithms and strategies for
determining the best path for a robot to follow in order
to reach a specific goal.

These applications of robotics technology are im-
portant for a wide range of applications, including
autonomous vehicles, manufacturing and logistics, and
search and rescue operations. This report explores the
various techniques and technologies used to support
these applications, as well as the challenges and op-
portunities presented by this rapidly evolving field. We
will first discuss the methodology we used for motion
and odometry, simultaneous localization and mapping
(SLAM), and path planning, then we will evaluate and
analyse our results, and finally we will provide our re-
flections as well as suggestions for further improvement.

Fig. 1: The Mbot Platform

A. Motion and Odometry

1) Wheel Speed Controllers: The foundation of the
Mbot control is in the wheel speed controllers. A PF loop
is implemented to govern the motor controllers PWM
duty command for each wheel independently. The wheel
position is measured using magnetic quadrature encoders
and velocity measured as the number of encoder tics
over a set time period. Finally encoder measurements
are converted to meters and meters/second respective
using the gear ratio (78.0), wheel radius (.042m), and
encoder resolution (20 tics/rev). The feed forward term
K is generated experimentally with the robot driving
on the ground at various PWM duties with values being
recorded once steady state velocity had been achieved. A
linear regression is fit to the gathered data points giving
the feed forward Ky constant as well as the intercept
Kpo representing the PWM duty needed to overcome
the static friction of the system. A Proportional loop is
then used to account for any other system perturbations
Or errors.

2) Robot Base Velocity: Control for the robot often
desired to done in the base frame not at a wheel level.
The conversion is done simply by

Viest = Viinear — w * wheel_base /2.0
Viight = Viinear + w * wheel_base /2.0

Thus a linear and angular velocity of the robot base
frame is converted to wheel speeds. It was determined
that an additional controller for the vehicle frame was not
needed because of the accuracy of the wheel controllers.
Instead further development was invested in the high
level motion controller.

3) Odometry: The pose of the robot is tracked as a
process of odometry. Odometry combines sensor data
from the encoders and IMU to synthesis the robot pose
relative to an initial pose. The encoder data from the
wheels gives a distance delta for each wheel. This can
be converted into a pose delta according to the following

da = (01 +6,)/2

do = (0; — &,) /wheel_base
0z = 04 % cos(0 4 69 /2)

8y = 4 * sin(0 + 09/2)

This gives a delta pose that is accumulated resulting
in odometry. To improve the accuracy of the heading
measurement the IMU is used. IMUs offer a higher
accuracy for heading with the drawback of zero rate drift.
”gyrodometry” solves this drift problem by trusting the
IMU for an accurate theta any time &4 is larger than
a threshold indicating the robot is moving. When d4 is
less than this threshold an accumulator captures the drift
of the IMU heading measurement that is applied for
every subsequent measurement. Thus the robot is able
to benefit from an increased accuracy to heading and
mitigate the zero rate drift when not moving.

4) Motion Controller: The Motion Controller takes
in a series of points and uses an RTR (Rotate Translate
Rotate) controller to interpolate between these points.
First, the initial turn is accomplished by a proportional
controller in place.

The translation section of the path is implemented
with a trapezoid profile controller. A linear 1 dimensional
trapezoid motion profile is computed that takes the robot
from the current position to the next target point bounded
by constants max_accel and max_velocity. The
feed forward position along this trajectory is calculated
by projected the 1 dimensional trapezoid profile back
into Cartesian space with start and end points of current
pose and goal pose. For each time step along the
trajectory there is a feed forward velocity and expected
pose. The translation error is computed from the current
pose and the expected pose at the time step. This error
is divided into components of those parallel to the linear
trajectory perpendicular to the trajectory. The parallel
component is used in a proportional controller for the
translation velocity of the robot. A Jy is calculated as
the difference of the current theta and the line of sight
angle to the goal target. The controller is finished when
the translation error is less than .02m.

V= fo + Kp * 5parallel
w= K, *dp
A final turn controller is executed to bring the heading

of the robot to the goal heading once it has reached the
goal point from the translation controller. This again is

a proportional controller with a high gain and a lower
error tolerance for completion.

B. Simultaneous Localization and Mapping (SLAM)

1) Mapping: Firstly, the map is discretized into grid
cells by the provided OccupancyGrid class, where
each cell has an assigned log odds. The log odds of a
cell, O(z,y), is defined as

O = log (P(A) /ﬁP(A))

where P(A) is the probability that a cell is occupied.
O = 0 when P(A) = 0.5. O then increases as P(A)
increases and vise versa. In this project, for computation
efficiency, O is truncated as a integer € [—128,128].

Then, the mapping is updated based on the LIDAR
laser scan. For each ray in a scan, the endpoint (z¢, ye),
O(ze, ye) is incremented by the default value 3, increas-
ing the belief that the cell is an obstacle.

Meanwhile, for all cells (z(*), y(?)) in between current
pose and endpoint, O(z(*),y(?)) is decremented by the
default value 2, increasing the belief that the cells are
free.

The mapping is updated whenever the robot is de-
termined to be in motion, which is checked using the
default conditions,

df > 0.002UdS > 0.002

where df is the change in heading and dS is the distance
traveled between poses.

2) Monte Carlo Localization: The Monte Carlo lo-
calization estimates the position and orientation, which
are together referred to as the pose, of the robot as it
moves and senses the environment [1]. Specifically, a
particle filter is used to represent an empirical distribu-
tion of likely poses, with each particle representing a
hypothetical belief of the robot pose [2]. The details of
how the particle filter fuses odometry and laser data to
output localized pose will be discussed next.

a) Measurement Model: Odometry-based measure-
ment model is adopted as odometry data is readily
available. For ¢ = k, the model firstly dissembles the
update in odometry in the last time step into a RTR
process [2],

Orot1 = arctan(yr — Yr—1, Tk — Th—1) — Op—1
= \/(l’k —or-1)? 4+ (Yp — Yr—1)?
67"0752 = Hk: - 9k—1 - 57‘01&1

6trans

where only when any of {6,ot1, dtran, Orot2 } are greater
than given thresholds would the robot be considered to
have moved. If moved, all the particle poses would be
propagated by the odometry with tunable Gaussian noise.

Specifically, let {z(),4() ()} be the pose of the i-th
particle,

.’ES) = x](:ll + St'rans Cos(el(cill + Srotl)

y](:) = y](;zl + Strans Sin(el(cill + STOtl)
9](;) = 9]({:7’21 + 57'0751 + 5’r'ot2

where

2 2
5r0t1 = N(5r0t17 O‘lérotl + a2§trans)
N 2 2 2
6t’r'ans = N((St'ransa a36t7-ans + a467-ot1 + 0(457.0,52)

N 2 2
5rot2 = N(5r0t27 a15r0t2 + a26trans)

where {a1, a9, 3,4} are tunable parameters respec-
tively representing the noise of rotation on rotation,
translation on rotation, translation on translation and
rotation on translation. The variances of the Gaussian
noises should be inversely proportional to the confidence
in the accuracy of odometry data. More details for the
tuning of parameters will be discussed in Results.

b) Sensor Model: The sensor model used is
based on the simplified likelihood model introduced in
ROB550 lecture slides. The model superposes the current
LIDAR scan onto the pose of each particle and assigns
a weight to the particle based on how likely is the
LIDAR scan given the particular pose. The likelihood
is calculated based on if the end of each ray is near a
hit. Algorithm 1 outlines the steps, where Or, a1, as are

Algorithm 1 Simplified likelihood sensor model

Input: particle pose p(, lidar scan, map
Because robot is moving while taking scan, interpolate
rays between p) and its parent
for all ray € movingScan do
Find ray’s end cell (z,y)
if O(z,y) > Or then
L(pD)+ = O(z,)
else
if ray € £10deg of X/Y axis then
take horizontal/vertical cells as neighbors
else
take diagonal cells as neighbors
if O(after)> O then
L(p)+ = a;0(after)
else if O(before)> Or then
L(p™)+ = ay0(before)
Return L(p())

tunable parameters. Modifications are made compared
to the original model introduced in class. Firstly, stricter
occupied condition is imposed with O = 110, which
has experimentally proved to have better performance,

following more closely to the actual pose. The consid-
eration of diagonal neighbors has also improved perfor-
mance as they follow the ray’s path more accurately. The
coefficients are tuned to a; = 0.6, a9 = 0.4.

c) Farticle Filter: The particle filter maintains an
empirical distribution of N weighted particles, each
representing a belief of the pose of the robot. The filter
fuses the probabilistic action and sensor models and
recursively localizes the robot.

The filter initializes with particles péi) = (mé“,yéi))

with w(()i) where i = 1,2,..., N.If the initial position of
the robot is known, then p(()z) are initialized by sampling
an Gaussian distribution centered at the known position
with ¢ = 5mm, accounting alignment error when placing
the robot. Meanwhil;:, if the initial position is unknown
(kidnapped), then pg) are sampled uniformly across the
map. For both cases, the initial weights w(()i) are all set

to be equal.

Then,lfor t = k, the‘ﬁlter recursively updates the
poses pg) and weights w,(:) based on Algorithm 2. where

Algorithm 2 Particle filter for localization

Input: odometry pose (z,y,6), laser scan, map
Determine if robot has moved
if has moved then

Re-sample posterior distribution

Propagate p” from p{"” | using action model
Update w,(:) = L(p™) using sensor model
Normalize wki such that > w,(:) =1
(@)

Return weighted average of p;~ as the localized pose

the re-sampling utilizes low-variance sampling, with its
details found in [2]. Meanwhile, after trials and errors,
it was determined that keeping N to be relatively low
and using all particles for weighted average is computa-
tionally more efficient and stable than using large N and
only using sorted upper percentiles for weighted average.
Logically, the former encompasses a more holistic repre-
sentation of a possibly narrower current belief, which has
demonstrated better performance. N = 200 was chosen
for the final implementation.

3) Combined Implementation: The combined imple-
mentation involves simultaneously localizing the robot
while updating the map. With the above features im-
plemented, the combined implementation is simply to
initialize grid map and particle filter first, then running
the particle filter and mapping algorithm sequentially in
a loop, which is shown in Figure 2.

Localizing:
advance particle

Mapping:
update
occupancy grid

Update log odds
of cells

Propagate
particle poses

\
|
1
|
l

f
|
|
|
\

Update particle
weights

Localized pose:
weighted
average

Fig. 2: Block diagram of SLAM system

C. Planning and Exploration

After implementing SLAM algorithms as above, a
map of an environment can be constructed using the
MBot. The Path Planning and Map Exploration will en-
able the MBot to autonomous recognize the surrounding
environment in an efficient way.

Algorithm 3 A* Algorithm

Input: start, goal(n), h(n), expand(n)
Output: path
if goal(start) = true then

Return makePath(start)

open <— start.
closed + @.
while open # & do
sort(open).
n < open.pop().
kids < expand(n).
for all kid € kids do
kid.f < (n.g+ 1) + h(kid).
if goal(kid) = true then
Return makePath(kid)
if kid N closed = & then
open < kid

closed <+ n
Return @

1) Path Planning: Path Planning uses A* Algorithm.
In A* Algorithm [3], the open list is implemented as a
priority queue which stores all accessible neighborhood
cell using breadth-first search. the closed list is also
implemented using a priority queue to store all the cell
being passed through.

Firstly, the open list will contain the cell in the start
position (it could be interpreted as the start node, while
each node represents a cell in the grid map), and the

algorithm will start searching map from this position,
and stop until the open list is empty.

While the open list is not empty, the open list will
pop out the node with highest g cost (cost of movement
in grid) plus h cost(heuristic cost to move from current
position to goal position), and expand to other surround-
ing cells that available for MBot to reach. For all current
node, the maximum quantity of kid nodes are 8, as there
are at most 8 cells in its neighborhood. To assess whether
the kid node is available, the kid cell’s distance towards
obstacles must be larger than 0.2m (larger than the radius
of MBot), and the cell must be in the current map. If
both requirements are satisfied, the kid node is available.
Those available nodes’ parent is the current node, and
they will be push back to the open list if they are not
in the closed list. Finally, the current node which being
pop out will be added to the closed list.

The g cost is calculated by adding up the parent cell’s
g cost and the Diagonal Distance from parent cell to
current cell. H cost is also calculating the Diagonal
Distance from current cell to goal cell [4].

When processed in each while loop, each kid node’s
cell position is compared with the goal position. If they
are the same, A* will stop searching. Tracing back from
each node’s parent node, a linked node path from start
to goal is generated. maximum iteration time of the for
loop to 10000 times is set in the case that A* cannot find
the map such as when goal position is not reachable by
obstacles. Thus, when it reaches the loop limit while not
reaching the goal, the algorithm will stop and return a
prompt showing search failure.

The path, if generated, is pruned such that only
changes in heading are sent to motion controller. This
pruned path then can be more efficiently followed by
the motion controller such that it does not attempt to
reach each point of the un-pruned path.

2) Exploration: The Map Exploration consists
of several states, including Initializing,
ExploringMap, ReturningHome, Completed,
Failed. First it will initialize its information, including
current pose (also being copied as home pose), goal
pose(preset to current pose), and start publish the status
message to lecm channel. After initialization, it will
automatically switch to ExploringMap stage. It will
find all exists frontiers and place them in a vector. Then
web will process throughout all frontiers to select one
that has the nearest midpoint to current position. Then,
it will use the above Partial A* Algorithm to plan a path
to approach this frontier. While the ExploringMap
states is still in progress, the algorithm updates the path
after 10 iteration with the ExploringMap state is
called. So it will update the path to the new nearest
frontiers as its exploring the map.

Simultaneously, the number of unreachable fron-

Algorithm 4 Partial A* Algorithm

Input: start, goal(n), h(n), expand(n), isclose
Output: path
if goal(start) = true then

Return makePath(start)

open <— start
closed < @
close_node < start
while open # & do
sort(open).
n < open.pop().
kids < expand(n).
for all kid € kids do
kid.f < (n.g+ 1) + h(kid).
if h(close_node) > h(kid) then
close_node <+ kid
if goal(kid) = true then
Return makePath(kid)
if kid N closed = & then
open < kid
closed < n
if isclose then
Return makePath(close_node)

Return @

tiers is recorded. Thus, the state will switch to
ReturningHome if frontiers number is equal to
the number of unreachable frontiers, and changes to
Completed state when it successfully return to the
home position. If all frontiers’ quantity is higher than un-
reachable frontiers’, while Partial A* Algorithm cannot
find any available path, the state will switch to Failed
and the program will be ended.

The vehicles automation is achieved through map
exploration using a strategy similar to A* algorithm, that
allows MBot to explore the map itself and return home
when all the frontiers has been explored. A frontier is
detected and defined as unexplored cells bordering an
open cell in the occupancy grid.

Once MBot starts exploration, it will seek all frontiers
in the map, and try to calculate a path from start position
to the frontier whose midpoint is nearest.

Most of the case, the midpoint of the frontier is not
within the map, so setting the midpoint directly as the
goal position will failed the original A* search. Two
options to mitigate this are breadth-first search from
the midpoint and find an available cell to be the goal
position, or create another unique strategy to reach some
available cells closer to the midpoint.

A unique strategy was chosen that relies on adjusting
A* search. It was named the Partial A* Algorithm. This
algorithm will continue after the open list when empty

Wheel Velocity for .5 m/s step
== Wheel Speed (m/s) == Command {m/s)

05

Speed (m/s)

0.0

Fig. 3: Step response of wheel PK controller for .5 m/s
step

or the loop reaches the maximum loop times. The node
with the lowest h cost is recorded in close_node. Then
by tracing the parent node from the close_node, it will
return a path from start node to close_node as next
exploration path (Detailed in Algorithm 3). This satisfies
that all points are within the configuration space of the
robot and the goal pose is the closest to the goal pose
that sits outside the configuration space.

SLAM is used to localize the MBot while automa-
tion steps are running. The slam pose will be updated
as the odometry information is continuously changing.
Therefore, the Mbot can tell its location in the grid map.

II. RESULTS
A. Motion and Odometry

1) Wheel Speed Controllers: The results of the wheel
speed controller step function response was 3. Accepted
levels of accuracy were achieved using the same loop
constants for both the left and right wheels which was
determined experimentally with the robots ability to
drive in a straight line for 1 meter deviating less than 5
cm from the center line. These values were 1. The wheel
controllers can accept values +0.8m /s as the maximum
with best results achieved when commanding between
+0.1 — 0.2m/s. This range was prioritized in the feed
forward and tuning of the wheel speed controller. The
wheel speed data was combined to create the velocity
and angular speed of the robot driving an example 1
meter out and back path. 4

Kp 2.0
Kr | 1.176
Kpo | 0.0737

TABLE I: Wheel Controller Values

2) Odometry: The odometry accuracy was measured
using a test pattern of a 1m square with goal points at
each corner. Multiple iterations of the path then can show

Linear and Rotation Speed
= Angle (rad/s) == Velocity (mis)
15

1.0
05

0.0

m/s or rad/s

-0.5

-1.0
5 10 15 20

Time (s)

Fig. 4: Linear and Angular speeds on an example path
from Wheel Speed

Fig. 5: Drift of odometry over 1m square test. 4 repeti-
tions

the drift of the odometry over time 5. The odometry
drifted less than Scm over the 4 repetitions from the
actual position of the robot.

3) Motion Controller: The Motion Controller led
to a high level of accuracy in combination with the
optometry. This is primarily because the controller took
into account the inability of the wheels to instantly
accelerate and thus the errors from wheel velocity where
much smaller than seen in the step response 3. This
results in a smooth achievable pose as can be seen in
the overlap of the feed forward pose with the measured
pose in 15. These low errors combined for an accurate
path following such as for an example maze run at .2
m/s 14.

B. Simultaneous Localization and Mapping (SLAM)

1) Mapping: Figure 6 demonstrates the performance
of the mapping algorithm.
2) Monte Carlo Localization:

Fig. 6: Mapping-only on obstacle_slam

(a) (b) (<)

Fig. 7: The odometry action model for different noise
parameter setting [2]. (a) similar confidence in transla-
tion and rotation; (b, ¢) less confidence in translation /
rotation respectively

a) Measurement Model: ldeally, when localizing
using only the action model, the particles should disperse
steadily due to the accumulated noises. Specifically,
sudden increase in the particle spread for edge cases
are eliminated, such as when turning-in-place with large
magnitudes. After tuning, the parameters used are listed
in Table II.

Parameter | Value

ai 0.015
az 0.025
as 0.04
Qg 0.0001

TABLE II: Tuned uncertainty parameters for the action
model

where the main sources of uncertainty are from trans-
lation on translation and rotation on rotation. oy is
extremely small as it also inherently incorporates the
unit conversion from rad/s to m/s. Since the odometry
was well constructed for both translation and heading
direction, the parameters were tuned to established (a)
in the patterns shown in Figure 7.

b) Particle Filter: Table V shows how the run time
linearly increases as the number of particles increases.
Based on the linear relationship, the estimated run time
for 10Hz = 0.1s is N = 2500 particles.

test_convex_grid test_empty_grid test_maze_grid test_narrow_constriction_grid

test_wide_constriction_grid

Min 137 4267 2600 3006 3297

Mean 182.5 6105.33 15322.2 4301.5 4831

Max 228 9243 31538 5597 6090
Median 0 9243 8512 0 6090
Std dev 45.5 2229.55 10979.4 1295.5 1156.7

TABLE III: The timing information for successful planning attempts

test_convex_grid test_empty_grid test_filled_grid test_narrow_constriction_grid

test_wide_constriction_grid

Min 48 50 28 45 50
Mean 143 92.5 38.4 1.75911e+06 50
Max 238 135 49 5.27715e+06 50
Median 0 0 43 127 0
Std dev 95 42.5 8.73155 2.48763e+06 0

TABLE IV: The timing information for failed planning attempts

Fig. 8: Error difference between SLAM and odometry
for drive_square

Particles (N) | Time (s)
100 0.0045
200 0.0081
300 0.0118
500 0.0210
1000 0.0399

TABLE V: Time taken to update particle filter with
different number of particles NV

Please refer to the appendix for a series of
plots for the performance of 300 particles on
drive_square_10mx10m_5cm. log. Figure
8 shows the pose difference between SLAM and
odometry poses overtime.

3) Combined Implementation: Figure 9 shows the
comparisons of SLAM with true poses. As seen, the
SLAM pose has made corrections to the odometry pose
towards the true pose by propagating noise to odometry
and fusing sensor model data.

Figure 24 in Appendix further analyzes the error in
the above plot numerically. With these numerical errors,

Fig. 9: Error difference between SLAM and true pose
for obstacle_slam

the RMS is calculated to be 0.467.

C. Planning and Exploration

1) Path Planning: One of the requirement is to show
the planned path in the environment mapped and the
actual path driven by robots. The figure 10 is the robot
executing the map exploration in a maze, and most of
the time the odometry (yellow line) and slam pose (blue
line) is aligned with the planned path (green line).

To test the A* algorithm, the astar_test.cpp
was run to see the statics output. The statistics on Table
IIT and Table IV are the successful attempt and failure
attempt on path planning execution for each example
problems provided in data/astar/ directory. The
results shows passing 5/6 of the A* tests, the test for
the test_empty_grid, test_filled_grid,
test_narrow_constriction_grid,
test_wide_constriction_grid,
test_maze_grid is passed, while the test for
test_convex_grid is failed. The timing information
is concluded in Table IIT and IV

botgui v oA x
Data to Show:

& Show Map
Show Laser
& Show Particles
 show Path
Show Obstacle Distances
& Show Frontiers
Available Pose Traces:
v
¥ SLAM_POSE

Clear Traces

Exploration State:
Initializing
Exploring Map
Retuming Home
Completed Exploration
Failed Exploration

Reset Exploration States

NGlohal 2 08-003) Cell (48330R) 1 oo0dds 0 ODOMFTRY-(047-117-239) SIAM POSF(047-119.2 53)

Fig. 10: Figure of planned path and actual path driven
by robots in an maze

« Show Particles
+ Show Path
Show Obstacle Distances

& Show Frontiers
Available Pose Traces
Clear Traces

Exploration State:
Initializing
Exploring Map
Retuming Home
Completed Exploration
Failed Exploration

Reset Exploration States

Fig. 11: Figure of test_maze_grid with path planning
using A* algorithm

The test information provided by test_maze_grid
is most useful as it is simulating the actual maze that
were explored during the competition. Figure 11 shows
one path successfully predicted in test_maze_grid
from specified start and goal location, which is conform
to the shortest path that avoids the obstacles.

2) Exploration: One example of Map Exploration is
depicted in Figure 10, which shows the MBot returning
home following the green planned path, after finishing
exploring the maze.

III. DISCUSSION AND CONCLUSION

The non-SLAM odometry and motion controller had
good accuracy that improved the robustness and ease
of implementing the higher levels of control. By com-
manding achievable goals to the wheel controllers a
higher fidelity of odometry which led to more success
with SLAM. Better performance was observed when
operating on hardware with this implementation than
logs from previous years.

Path planning and map exploration produced a good
results. The implementation of A* algorithm allows
MBot to run a path efficiently leading it to the goal
position, as long as the obstacles leaves a proper space
for MBot to pass through. It might be necessary for us
to smooth the path so that it can avoid a sharp turn when
it is not needed.

The map exploration part has highly robustness as the
path is updated at a fixed frequency while marching
towards the nearest frontier. Still, more can be imple-
mented on map localization with an unknown starting
position.

A. Competition

1) Task 1: Task 1 was a test of the basic path
following and map smearing of a consistent small map.
The results can be seen in 5. Here the bot performed
well in pose and was able to return to within 3cm and
less than 5 degrees of error for heading. The map did
experience an amount of smearing which resulted in
thicker walls than expected because of the increased
iterations through the map. Such smearing may be an
indication for drifts in SLAM poses. The drift can also
be deduced based on the increasing error shown in Figure
24. Thus, the parameters in SLAM could be further fine-
tuned.

2) Task 2: This task involved the robot autonomously
navigating a small maze. The robot was able to clearly
navigate through the maze and explore all frontiers as
well as return the the start. Seen in 12 A* was able
to plan a long path back to the beginning section. The
robot also returned to the starting pose within 3cm and
less than 5 degrees of error for heading. the map quality
was improved from task 1 and had much less smearing.

3) Task 3: This task was large maze for the robot
to navigate through and return the beginning. A fea-
ture that caused some issues was the curved wall in
a portion of the maze. This caused the SLAM pose
to be unstable which resulted in the motion controller
also being unstable. The robot was able to successfully
explore all frontiers however the robot was unable to
return to the start because of an error in the exploration
program. The error may be again due to drift in SLAM
pose and thus deviations from the actual robot location,
causing the robot to drive into an obstacle. The map
that was generated was 13. The curved section can be
seen with the most smearing of that wall. This task did
however demonstrate the robustness of the exploration
and frontier searching program.

REFERENCES

[1] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte carlo local-
ization for mobile robots,” in Proceedings of (ICRA) International
Conference on Robotics and Automation, vol. 2, May 1999, pp.
1322 — 1328.

[2]

(3]

(4]

[3]

S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. The
MIT Press, 2006. [Online]. Available: http://www.probabilistic-
robotics.org/

P. Hart, N. Nilsson, and B. Raphael, “A formal basis
for the heuristic determination of minimum cost paths,”
IEEE Transactions on Systems Science and Cybernetics,
vol. 4, no. 2, pp. 100-107, 1968. [Online]. Available:
https://doi.org/10.1109/tssc.1968.300136

“theory.stanford.edu,” 1968. [Online]. Available:
http://theory.stanford.edu/ amitp/GameProgramming/Heuristics.html

M. Spong, S. Hutchinson, and M. Vidyasagar, Robot
Modeling and Control. Wiley, 2005. [Online]. Available:
https://books.google.com/books?id=wGapQAAACAAJ

APPENDIX

Fig. 12: Competition Task 2

0.6 4

0.4 4

0.2 4

0.0 4

-0.4 4

0.6

0.‘0 0.‘5 l.IO 1.’5 2.‘0 2:5 3.‘0
Fig. 14: Example of motion controller achieving maze
run

ff-y, pose_x and Pose_y

-y ==X y == fix

20

10
05

0.0

-0.5
1 2 3 4 5

Fig. 15: Pose over time with a trapezoid controller

Please refer to below for a
for the performance of 300
drive_square_10mx10m_5cm.log.

series of plots
particles on

Fig. 13: Competition Task 3

Fig. 16: Demonstration of slam particles (1)

Fig. 17: Demonstration of slam particles (2) Fig. 20: Demonstration of slam particles (5)

Fig. 18: Demonstration of slam particles (3) Fig. 21: Demonstration of slam particles (6

Fig. 19: Demonstration of slam particles (4) Fig. 22: Demonstration of slam particles (7)

Fig. 23: Demonstration of slam particles (8)

Figure of numerical SLAM pose error compared to
truth

06

04

Error

02

0.0

Time

Fig. 24: SLAM pose error compared to truth

11

