LiDAR Fusion and Dynamic Object Masking for ORB-SLAM?2

Yi-Ting Hsiao, Ting Wei Li, Ke Liu, Joshua Symonds, Sibo Wang (Team 27)

Abstract— When using SLAM (Simultaneous Localization
and Mapping) to navigate an autonomous robot in an unknown
environment, it is generally a prerequisite that the environment
is static. This is problematic since mobile robots nearly always
operate in dynamic environments. This is because when SLAM
attempts to localize, it assumes the world is modeled accurately
by its internal map which was generated with previous data.
By using a 3D object detection algorithm, we can identify
key objects in our environment that may be dynamic and
create more accurate maps that minimize the impact of moving
objects. By purging objects that we know to be mobile - such
as humans and cars - from the data we use in SLAM to
generate the map and localize, we will no longer be trying
to localize using stale information stored in our map. Filtering
mobile objects from the environment, can improve localization
accuracy while running SLAM in dynamic environments and
create a map that better reflects the mobile robot’s environment.
Further, using depth prediction sensor fusion techniques we can
better represent the distances of objects in the environment,
which allows for even better quality of information used by
SLAM to construct its map and localize the mobile robot’s
position, especially at high speeds.

I. INTRODUCTION

SLAM, or Simultaneous Localization and Mapping, is
a critical process for mobile robots to navigate through
unknown environments. Visual SLAM is an algorithm that
accomplishes this with information from a camera. A typical
visual SLAM model extracts features and tracks them over
key frames, which are then used to optimize the camera pose
over time and build a static map of the environment. One of
the most well-known benchmark models is ORB-SLAM and
its improved version, ORB-SLAM?2 [1].

However, as a visual SLAM model, ORB-SLAM2 is
limited to taking input in the form of monocular, stereo, or
RGB-D data, which can constrain its performance in complex
environments. To address this, we propose to enhance ORB-
SLAM?2 by integrating a depth-fusion model that can map
LiDAR to pixel depth. Additionally, we propose to integrate
a bidirectional 3D object detection model that can mask
dynamic objects during the feature selection process, further
improving ORB-SLAM?2’s performance.

II. RELATED WORKS

A. SLAM Models

ORB-SLAM?2 is a visual SLAM system that builds upon
the original ORB-SLAM model [1]. Specifically, ORB-
SLAM?2 has loop closure detection, robust feature extrac-
tion and matching algorithm based on ORB, and multi-
threaded implementation allowing real-time performance.
ORB-SLAM?2 has become a popular benchmark for visual

SLAM systems due to its robustness, efficiency, and accu-
racy. Thus, we have chosen ORB-SLAM?2 for implementing
modifications and comparing results.

Capturing dynamic objects is an essential aspect of im-
proving SLAM performance, and current research is actively
exploring this area. One of the most well-known benchmark
models for this task is DynSLAM [2], which reconstructs the
static background, moving objects, and potentially moving
but currently stationary objects separately. To achieve this,
DynSLAM uses instance-aware segmentation and sparse
scene flow to classify objects, which improves camera pose
and map reconstruction.

While DynSLAM is an effective and advanced method, for
the sake of simplicity, our model focuses only on semantic
segmentation of all moving and potentially-moving objects.
The approach still enables us to improve the accuracy of the
SLAM system by masking out dynamic objects and ensuring
landmarks in ORB-SLAM?2 are static. However, future work
could explore the separation of potentially-moving objects,
such as parked vehicles, and continuous tracking of moving
objects to further enhance the performance of our model.

B. 3D Object Detection Models

Self-driving vehicles require an accurate understanding
of their surrounding environment to operate reliably, and
object detection is the fundamental function of the percep-
tion system[3]. However, most object detection models only
focus on 2D monocular images [4] [5]. These models may
have high performance, yet they fail to provide the depth
information of these objects. In contrast, 3D object detection
provides the third dimension to reveal more accurate location
information.[3]

To achieve such information, some perception models [6]
[7] adopted stereo cameras as the sensor. Yet these models
are computationally expensive in depth estimation and per-
form poorly with textureless regions, during nighttime, or
with limited FoV. Others utilize LiDAR point-cloud [8] [9],
yet point-cloud data lacks texture information. Finally, there
are also fusion-based models [10] [11] [12] that utilize sensor
fusion techniques to map point-cloud and image data for
better accuracy. However, cross-modal integration without
losing information has always been a challenging task. Some
fusion-based models incorporate multiple fusion stages to
reduce information loss [13] [14], whereas others incorporate
virtual or pseudo-point-based 3D object that seamlessly fuses
RGB images and LiDAR data by depth completion [15] [16]
[17].
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Fig. 1: System architecture overview

C. Depth Fusion

Depth Fusion is necessary in many cases such as au-
tonomous driving, robot navigation. Modern techniques
would generate RGB images and LiDAR point clouds for
mapping and localization, and depth map is helping to
improve prediction accuracy in tasks like object detection,
3D point clouds reconstruction. There are several ways to im-
plement depth map generation. Firstly, it is common to pre-
dict depth using stereo images. For example, the stereoBM
opencv model and a MATLAB algorithm were developed
to construct depth map using two static images[18]. Their
method includes finding the disparity between two matching
points in images. Then, the depth value is generated, which
is inversely proportional to the difference in distance of the
corresponding points.

Another approach to generate depth map is combining
images with LiDAR point clouds. While RGB image can per-
ceive the texture and color, the LiDAR sensor data contains
the depth information and is not impacted by poor lighting
conditions. The article focusing on the fusion of LiDAR and
Monocular Vision provides a suitable algorithm for depth
interpolation and data fusion[19]. This algorithm can filter
the sparse point clouds to dense point clouds, and project
points from 3D to a 2D depth map. In our methodology,
with pre-processed 3D LiDAR point clouds and RGB as our
input, we utilize this algorithm to generate RGB-D map for
mapping and localization.

III. METHODOLOGY

We first introduce the overall proposed architecture, shown
in Figure [T, With monocular and LiDAR input, we first
use a bidirectional 3D object detection model, BiProDet, to
produce pixel-level labels for dynamic objects. Meanwhile,
we also predict the depth of each pixel based on point cloud
projection. Then, we combine the outputs to form masked
RGB-D data. We then modify the ORB-SLAM?2 code base
such that pixels that are masked as dynamic objects are not
considered in key-point selection. Finally, we analyze the
produced camera pose and trajectory.

A. Object Detection with BiProDet

Inspired by Bidirectional Propagation For Cross-Modal 3D
Object Detection [13], or BiProDet, our perception algorithm
involves an image pipeline and a point cloud pipeline that
learn feature representations from RGB images and LiDAR

point clouds respectively. As shown in Figure 2] point-to-
pixel and pixel-to-point propagation methods were adopted
to allow features to flow between the point cloud branch
and the image branch in a multi-stage fashion throughout
the feature-learning process. This bidirectional feature prop-
agation approach makes use of the potential of the image
branch to enhance the expressive power of the point cloud
backbone network. Additionally, normalized local coordinate
(NLC) map estimation is employed to promote the learning
of rich semantic and spatial representations. These tasks are
necessary to complement the sparse spatial representation
extracted from point clouds, especially for distant or highly
occluded cases. An example of BiProDet identifying 3D
objects in its environment can be seen in Figure [3] where 4
cars are identified and surrounded in a green bounding box.
Eventually, based on the semantic segmentation output from
the image backbone, the dynamic objects will be masked-out
and the remaining data will be passed down to ORB-SLAM2.
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B. Masking Data with Semantic segmentation

In order for ORB-SLAM2 to be able to properly under-
stand our filtered data, we must also identify which pixels
in the RGB image correspond to dynamic objects. This
information is a direct byproduct of BiProDet and we are
able to extract which pixels represent data we want to filer
out from the data being given to ORB-SLAM?2. This can be
seen in Figures [ and [5] where we filter out the pixels with
dynamic objects from the image, shown by coloring them

green.

Fig. 5: Output image with mobile objects removed

C. Data Fusion for RGB-D map

In most cases, the ORB-SLAM?2 model is able to take
monocular data and perform well[20]. Since this model can
pre-process the input and generates the salient keypoint loca-
tions’ features, it’s monocular vision system is independent
of stereo or RGB-D sensor. However, taking monocular-
only inputs will have a delayed initialization, which is not
suitable for situation of more challenging outdoor scenarios
with fast moving camera. Therefore, it’s necessary to obtain
a dataset with depth information, so that it can generate
point clouds directly from each frame, which is critical for
not losing tracking in a high speed camera movement. In
this regard, we will generate depth map frame by frame
using LiDAR point clouds and RGB image provided by
the KITTI odometry dataset, and then compare the newly
generated camera trajectory to the trajectory generated by
only monocular vision.

In the first step, we need to filter the sparse LiDAR
points from the point cloud clouds. The LiDAR point clouds
is in the format V; = (X,Y,Z r), where X,Y,Z are
the 3D coordinates and r is the reflectance value. The
coordinates with positive reflectance value is selected and
being projected into the 2D camera frame p; = (u,v,2)
by equation 1| Inside this function, the i** 3D point V; is
pre-multiplied by T'7ye10_to_cam and Pj, where P; indicates
the 3x4 projection matrices after rectification for 5" camera.

Then, the projected point p; will be normalized by dividing
the last element of the vector z. After projecting the 3D point
clouds data into the camera frame, we need to implement
depth interpolation to form the depth map, where we form a
KDTree using the point clouds, and assign the depth value
of a pixel using the k£ nearest neighbors’ weighted sum.

1

bi = ; : Pj : T’rvelo,to,cam ' V; (1)

An example of our generated depth maps can be seen in
Figure [6] and Figure [7} Figure [6] was the input monocular

j image. In the depth image, objects appear closer to the

camera as the colors shift towards purple, while objects that
are farther away are represented by colors that shift towards
yellow-green. Experimentally, lowering the hyper-parameter
k has yielded a better result of depth mapping, shown in

Figure [7]

T

Fig. 6: Input image for depth mapping

Fig. 7: Visualization of result of depth mapping

D. Processing ORB-SLAM?2 with masked dataset

Here we briefly introduce the high-level idea of how
ORB-SLAM?2 works on RGB-D datasets. ORB-SLAM?2 will
detect and track features in the RGB images using the
Oriented FAST and Rotated BRIEF (ORB) algorithm. After
that, given the depth map we generated from our depth
interpolation algorithm, ORB-SLAM?2 can estimate the depth
of the detected ORB features and project those points into a
3D map. By comparing the current frame with the previous
frame and the map, ORB-SLAM?2 can estimate the camera’s
pose. The additional depth information help improve the
accuracy of the pose estimation. Another critical stage of
ORB-SLAM?2 is loop closure detection, where ORB-SLAM?2
detects when the camera revisits a previously seen location
and improves the map and pose estimation.

We modified the source code of ORB-SLAM2 to ac-
commodate the 2D semantic mask. Given the output mask
from BiProDet, we mainly modify the files: Frame.cc
and ORBextractor.cc to take an additional sequence



of binary mask images as input and exclude the key
points within the area of objects. Specifically, for each
frame, we filtered the key points generated by the function:
DistributeOctTree by the binary values obtained from
the mask corresponding to each pixel in this frame.

IV. RESULTS

Our new SLAM architectureﬂ was applied to the KITTI
dataset [21], which we believe is an ideal use case for our
model, as it can effectively reflect the dynamic surroundings
encountered in self-driving cars. The dataset consists of se-
quential sets of LIDAR geometric data and color images from
stereo camera, which serve as the input data, and a ground
truth position that we can use to evaluate our performance.
Specifically, we have chosen sequence 07, which has a loop
closure and many dynamic objects (pedestrians, cyclists,
cars, etc.).

1) Data Masking Accuracy: Before integrating to overall
pipeline, we have first evaluated the semantic segmentation
model. Accurate semantic segmentation is crucial since fail-
ure to identify a moving object accurately can cause us to
try to localize with respect to unreliable landmarks and iden-
tifying static objects as dynamic removes possible landmark
candidates and can decrease ORB-SLAM2’s performance.
To evaluate our masking accuracy, we used the intersection
over union of our classifications against a ground truth clas-
sification. Further, we visualized our classification accuracy
for each image, which can be seen in Fig. [§] where green
represents a correct classification, blue represents a missed
classification, and red represents an erroneous classification.

Our total IoU was 0.73 which we were content with. For
simple images such as one with only a few nearby cars, our
IoU was generally about 0.90, but we struggled to identify
objects too far or near as well as trucks and vans which
significantly decrease our performance.

Fig. 8: Masking accuracy

2) Localization Performance (Masking Only): We have
evaluated the localization performance of our model based
on the 07 sequence from the KITTI visual odometry dataset
[21]. To first evaluate the performance of the masking mech-
anism, we have compared monocular with mask against the
baseline of monocular only. Figure [0] compares the camera
trajectories we generated to the ground truth trajectory (in
black dotted line), where green is based on only monocular
input, while blue is based on monocular and dynamic ob-
ject mask. As shown, adding mask to the input data has

Ittps://gitlab.eecs.umich.edu/jsymonds/semantic_
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Fig. 9: Comparisons of camera trajectory in KITTI 07

helped ORB-SLAM?2 to localize, especially when turning
at intersections, where there are more moving objects in
the scene. The quantitative analysis is based on the widely
adopted absolute pose error (APE) metric [1]. The masking
has reduced the root mean squared APE from 2.54 to 2.32.
Table [[] lists more statistics on the APE analysis.

Mono. | Stereo Mono. Mono. Mono. +
+ Mask + DP DP + Mask
RMSE 2.54 0.45 2.32 0.456 0.43
mean 2.28 0.41 2.02 0.42 0.41
min 0.29 0.08 0.13 0.04 0.09
max 5.01 0.81 4.08 0.80 0.68

TABLE I: Statistics of absolute pose error (APE)

Figures [T0] shows the detailed comparison of the camera
pose along the trajectory path. As seen, the mask has
improved the position accuracy, especially along the y-
direction.

3) Localization Performance (With Depth Prediction):
We then evaluated the performance of depth prediction
and our overall model. As shown in the Figure the
trajectory of with DP (depth prediction) is much closer
aligned to the ground truth than the monocular-only baseline.
Quantitatively, the RMSE APE is improved to 0.456, which
largely outperforms the monocular baseline, and performs
comparatively to the stereo baseline, as shown in Table
Figures 12| provides a more detailed error evaluation for both
DP and our final model, DP + mask.

To further evaluate the performance, we select the stereo
input as another benchmark, since it also incorporate depth
information. From Table[l} with stereo images as input, ORB-
SLAM2 has about 0.45 RMSE APE. Comparatively, our final
model of monocular with depth prediction and masking has
0.43 RMSE APE, which shows a slight improvement.
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V. CONCLUSION

In this study, we presented a modification to the ORB-
SLAM2 model to improve its performance in dynamic en-
vironments. By integrating a depth prediction sensor-fusion
model and a 3D object detection algorithm, our model can
better represent the distances of objects in the environment
and identify key objects that may be dynamic and remove
them from the data used in SLAM. Our results demon-
strated that our modified model outperforms traditional ORB-
SLAM?2 in terms of localization accuracy in dynamic envi-
ronments.

One of the main contributions of our work is the in-
tegration of a depth-fusion model, which allowed us to
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capture richer information about the environment. By fusing
data from camera and LiDAR sensors, we were able to
obtain a more accurate representation of the distances of
objects in the environment. This was particularly useful in
dynamic environments, where the observer may be mov-
ing and their distance from keypoints in the environment
may change rapidly. Our results showed that the use of a
depth-fusion model led to generally improved localization
accuracy, particularly in scenarios where traditional ORB-
SLAM?2 struggled like navigating an intersection with many
other moving vehicles.



Another important contribution of our work is the integra-
tion of a 3D object detection algorithm, which allowed us to
identify key objects in the environment that may be dynamic
and remove them from the input data. This was particularly
useful in scenarios where there were many dynamic objects
in the scene, such as in urban environments with heavy traf-
fic. By explicitly removing these objects from the input data,
we were able to improve the accuracy of the SLAM system
and reduce the number of errors and ensure that no keypoints
used for localizing were assigned to unreliable landmarks.
This improved allowed for us to consistently outperform
ORB-SLAM?2’s benchmark both regarding monocular and
depth-informed localization.

Our results showed that the proposed modification is par-
ticularly effective in scenarios where the autonomous vehicle
is maneuvering through an intersection which is a partic-
ularly crucial part of autonomous driving, where accurate
localization is essential to ensure the safety of passengers and
other road users. There are many other applications where
the work presented here may be useful such as localization
for drones - which tend to move very quickly and abruptly
change direction, and collaborative autonomous systems -
where the observer will frequently be interacting with several
mobile agents in the environment.

In conclusion, our study demonstrated that the integration
of a depth-fusion model and a 3D object detection algorithm
can significantly improve the performance of ORB-SLAM?2
in dynamic environments. The proposed modification has the
potential to enhance the performance of visual SLAM sys-
tems, making them more reliable for autonomous robots to
navigate through complex environments. Future work could
focus on further improving the accuracy of the sensor-fusion
depth prediction model and the object detection algorithm,
and testing the modified model in various other real-world
scenarios.

VI. FUTURE WORK

There are several directions that this project can be ex-
panded to further improve its performance. Here we will
outline a few ideas that we feel would be good extensions
of our work.

1) One extension of our work would be attempting to
implement our work in this paper to other scopes where
it may be helpful such as localization for controlling
drones or in collaborative autonomous systems, where
the ability to localize at high speeds and in dynamic
environments is uniquely important.

2) A very logical extension of our work here is that
instead of fully masking out dynamic objects in our
environment, we track their speeds and estimate where
they may be in the future. This would allow for us
to still use the information from all objects in our
background without making the risky assumption that
they’re static. Further, this would allow for us to still
use the information from objects that could be dynamic
but don’t happen to be moving - such as a parked car
- and use that information to help localize.

3) Another idea for future work would be to identify

objects in the environment that are static as well and
use them to construct a semantic map of the environ-
ment, then use that information to localize better. An
example of this within autonomous driving would be
identifying trees and lampposts along the side of the
road and tracking them as landmarks. Encoding the
map with rich information about the specific objects
in the environment may improve localization accuracy
and build a more meaningful map.

4) We also see potential improvement to our depth pre-

diction model that could be made by using machine
learning to predict the depth of objects in the environ-
ment instead of using direct computation.
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