
1

ROB 550 Robot Kinematics and Control
Yi Shen, Ke Liu, Ashokkumar Thirumalaesh
{shenrsc, kliubiyk, thiruchl}@umich.edu

Abstract—This work aims to control a 5 DOF robot
arm to complete multiple tasks. In particular, the arm
should pick and drop multiple blocks in specific locations
and orientations. The work is separated into two parts:
Modelling of the robot arm, Control it with the model.

I. INTRODUCTION

The robot arm used in this work is the ReactorX-
200. It has 5 revolute joints and is driven by 5 servo
motors. Therefore, it is equipped with 5 degrees of
freedom(DOF).[1]

Fig. 1. Technical Drawings of ReactorX-200 robot arm

To control the robot arm, the requirement is to un-
derstand how joints’ values in the configuration space
determine the position and pose of the arm. Then, a
forward kinematics model is necessary to describe this
process. Conversely, when position and orientation of
blocks are known, corresponding joints’ values need to
be identified to catch the blocks solidly. This is done by a
model of the inverse kinematics. Besides, the arm should
also have a well defined path from it’s current position
and pose to a new one such that there are no collisions
during the traversal of the path. A path planning model is
developed for the same. Finally, we discuss the strategies
on accomplishing multiple tasks under the state machine
section.

II. METHODOLOGY

A. Forward kinematic solution

Based on the technical design of RX-200 shown in
Fig1, we can derive the schematic of the arm with DH
frames. We can then derive the DH-tableI.

Fig. 2. schematic of the arm with relevant DH parameters

TABLE I
DH-TABLE FOR THE RX-200 ROBOT ARM

param 1 2 3 4 5 6
a 0 200 50 200 0 0
α π

2 0 π 0 π
2 0

d 103.91 0 0 0 0 172
θ θ1 − π

2 θ2 +
π
2

π
2 θ3 θ4 +

π
2 θ5

We draw the schematic in this specific way following
the required conventions. The robot arm’s initialized
position and the Z-axis of each frame is along the
positive direction of a joint’s servo. We also draw the
2th frame as a fixed pseudo-frame to simplify further
calculations. With the help of this DH-table, we get a
series of homogeneous matrices. The matrix in terms of
the ith link can be acquired by following equation. In the
equation, each angle θ, α and the corresponding offsets
are taken from the DH-table.

T i−1
i =

cθi sθi · cαi sθi · sαi ai · cθi
sθi cθi · cαi −cθi · sαi ai · sθi
0 sαi cαi di

0 0 0 1

 (1)

After we derive this series of matrices, we can multiply
them together to get the position and pose of the end
effector from the final transformation matrix.

While we built the DH-table based on the blue print,
it resulted in errors. And thus, an adjustment to the table
was carried out based on the error returned through few
test cases. We performed a teach-and-repeat to check the
errors during a mission to swap blocks at locations (-100,
225) and (100, 225) through an intermediate location

2

(250,75). We recorded joints and through those joints
and derived the positions of our end effector through FK.
They are visualized below: From the figures, it is evident

Fig. 3. joints over time for teach&repeat and 3D plot of end effector
position

that the end effector is not close enough to the blocks.
After comparison, a modification to d6 from 174.15 to
172 was made so that the end effort can robustly grasp
blocks at the middle. In addition, after modified, we can
swap for more than 10 times without fail.

B. Inverse kinematic solution

Inverse kinematics(IK) is an essential part of our task,
as this model determines the joint values of the servo
when we want to catch something in world frame.

In most cases of possible IK, a suitable point along the
structure can be found, whose position can be expressed
both as a function of: given end-effector position and
orientation, reduced number of joint variables.This im-
plies we can articulate the inverse kinematics problem as
two subproblems.[2](page 94). For a manipulator with a
spherical wrist, the natural choice is to locate a point W
at the intersection of the three terminal revolute axes.
Although our arm does not have such a construction,
we can regard the last two links as a spherical wrist
with a fixed first revolute joint. Once the end-effector
position and orientation are specified in terms of pppe
and RRRe = [nnnessseaaae], the wrist position can be found
as[2](page 94,last line)(kinematics.py line206-217)

pppw = pppe − d6aaae (2)

If so, all links before PPPW can be regarded as an anthro-
pomorphic Arm. We begin by solving inverse kinematics
for them, followed by solving the kinematics for the
spherical wrist. Note that, although we have a pseudo-
frame, the links before them are also an anthropomorphic
arm. Thus, all we need to do is solve for the same
and give it the necessary offset based on our specific
configuration. If so, we can assume our a2 is 50

√
17

and a3 is 200 and that the initialized position is parallel
to the ground. It follows[2] (page 97,(2.95)-(2.97)) :

pwx = c1(a2c2 + a3c23) (3)

pwy = s1(a2c2 + a3c23) (4)

pwz = a2s2 + a3s23 + d1 (5)

Then we proceed to computing θ1,that gives rise
to two solutions[2](page 98,(2.109,2.110)(kinematics.py
line221-227):

θ1,1 = Atan2(pwy, pwx) (6)

θ1,2 = Atan2(−pwy,−pwx) (7)

Further, we have an equation for θ3[2] (page
97,(2.98))((kinematics.py line234)):

c3 =
p2wx + p2wy + (pwz − d1)

2 − a22 − a23
2a2a3

(8)

−1 <= c3 <= 1 is a necessary condition, else the wrist
point is found to be outside the reachable workspace.
Thus, we can get two solutions of θ3 with c3. And once
we acquire θ3, the θ2 becomes certain and we can get it
through the ratios of a triangle.(.py line247-252)

tanα =
a3sinθ3

a2 + a3cosθ3
(9)

α = atan2(a3sinθ3, a2 + a3cosθ3) (10)

θ2 = atan2(pwz − d1,
√

p2wy + p2wx)− α (11)

In the end, we input our offsets and acquire our final
solutions:(kinematics.py line256-278)

θ2final = atan(4)− θ2 (12)

θ3final = atan(4) + θ3 (13)

With θ1,θ2,θ3, we can compute the rotation matrix
R0

4.Further, we have R4
6 = R0

4
T
R0

6. As we only has 2
unknown angles, the rotation matrix has the following
equation:(kinematics.py line299-312)

R4
6 =

0 0 1

1 0 0

0 1 0

 c4c5 −c4s5 s4

s5 c5 0

−s4c5 s4s5 c5

 (14)

The constant matrix is used as a rotation offset to rotate
our frame4 to the same pose of frame6 at the initialized
position. Then the ZYZ Euler angles degenerate to YZ,
and form the equations shown. We shall term the matrix
formed by YZ angles as Ryz . Hence, we can solve for
θ4 and θ5

θ4 = atan2(Ryz[1, 3], Ryz[3, 3]) (15)

θ5 = atan2(Ryz[2, 1], Ryz[2, 2]) (16)

1) Verifying the accuracy: We have four solutions
for the IK since we have two separate solutions for
θ1 and θ3. However, if it gives rise to singularity,
degenerate poses or unreachable areas, we need an
mechanism to account for the same. Firstly,our naive
solution is to choose the best option from 4 solutions.
As servos are constricted on their angles of rotation,
θ1,2 = Atan2(−pwy,−pwx) is not a good approach as
it is difficult for RX200 to rotate towards it’s backside.
Similarly, we want to keep θ2final less than 0, and so we

3

prefer a better choice for theta3. Now, we have only one
solution to verify. If any position can not be reached, that
is, −1 <= c3 <= 1 can not be satisfied, we return an
error. However, if the position is reachable but the pose is
not, we will still have a Ryz matrix, but it is considered
invalid. During these situations, we verify after receiving
a potential solution. We put joint angles generated by our
IK into FK to get a transform matrix Tg . We then use
the position and pose of the end effector given, to get
a transformation matrix Tc. Given the veracity of our
solution, we should have following euqation:

det(Tg − Tc) < ϵ (17)

ϵ is a threshold close to zero. However, real world
scenarios have constraints like servo ranges and self-
collision poses. Therefore, in such cases our legal IK
solution may not be applicable. This is a topic beyond
theoretical IK and as such will be discussed in path
planning.

C. Path planning

1) Collision check: Collisions can be classified
into two cases: manipulator-environment collision and
manipulator-manipulator collision.[3] Collision checks
are essential when our IK solutions are legal but are
not necessarily applicable, due to the possibility of a
collision. In our case, all obstacles are formed by blocks.
Thus based on theory surrounding bounding boxes [3],
we choose cylinders to simplify both obstacles and links.

Distance check between two cylinders is shown below:

Fig. 4. Collision detection of cylinder-cylinder

First, we compute the shortest distance dmin between
2 lines

l1 : Pl1 = P1 + λ1s1s1s1; l2 : Pl2 = P3 + λ2ssssss

s1s1s1 = P2 − P1, s2s2s2 = P4 − P3, 0 <= λ1, λ2 <= 1

Computing dmin equals solving a minimisation-
optimization problem with the constraint:
minf(λ1, λ2) = ||(P1 + λ1s1s1s1)− (P3 + λ2s2s2s2)||2

s.t.0 <= λ1, λ2 <= 1
(18)

Then we have ∂f
∂λ1

= 0, ∂f
∂λ2

= 0:

λ1 =
(s1s1s1s2s2s2)[(P1 − P3) · s2s2s2]− ||s2s2s2||2[(P1 − P3) · s1s1s1]

||s1s1s1||2||s2s2s2||2 − (s1s1s1 · s2s2s2)2

λ2 =
(s1s1s1s2s2s2)[(P1 − P3) · s1s1s1]− ||s1s1s1||2[(P1 − P3) · s2s2s2]

||s1s1s1||2||s2s2s2||2 − (s1s1s1 · s2s2s2)2
(19)

if 0 <= λ1, λ2 <= 1, then dmin = f(λ1, λ2).
Otherwise, we shall check the projection of the points
to the lines. For example, if we wanted to check the
projection from P3 to line1:

λ1 =
[(P3 − P1) · s1s1s1]
||s1s1s1||2

(20)

if0 <= λ1 <= 1 then dmin = f(λ1),
and So do other points and lines. Else,dmin =
{||P1P3||, ||P1P4||, ||P2P3||, ||P2P4||}MIN ifdmin >
rC1 + rC2 + ds, then this two cylinders are collision
free. ds is a safe offset.

In our work, obstacles are blocks on a board. As we
can detect the height of the blocks, we assume their
height as their length and the diagonal length as the
radius for the cylinders. For links, we measure their
lengths and radii and get their position by FK. We then
achieve a map for the robot arm, to do path planning.
However, there is an exception. For adjacent links, the
method of using two cylinders cannot apply, as the
method will consider them to be colliding objects. For
those links, we acquire a safe range from the website
of the robot arm and check whether joint angles are
within safe range.

2) RRT algorithm: For this robotic arm path planning
task, we use Rapidly-exploring Random Tree (RRT)
algorithm and thus has to be implemented for 5DOF.

The pseudo code for the algorithm is shown below[4]:

Algorithm 1 Pseudocode for RRT Algorithm
Input: Start config P , Goal config Q
Output: A path formed by list of 5DOF joints for the
arm to reach to the goal config from start config

RRT Connect(qinit)
T.init(qinit)

for k = 1 to K do
qrand = RANDOM CONFIG
EXTEND TREE(T, qrand)

end for

This algorithm helps generate a random tree that ex-
tends from the start configuration to goal configuration.
To optimize the RRT algorithm, we tune the randomness
of creating a random configuration, the step size, and
the bias value measuring the distance between current
position and final goal.

(a) random config()
This helps in generation of random points
of joint configurations(in 5DOF), denoted as
(α1, α2, α3, α4, α5). For each iteration, we try to
extend the tree towards this random point. So we
randomly generate a point within the safe range(the

4

range limit of each joint in robot arm), with 10%
possibility of generating the goal configuration.

(b) nearest neighbor()
After generating the next set of joints, q =
(α1, α2, α3, α4, α5), we shall find the node in the
tree, that is the nearest to connect the same with q.

(c) extend tree()
By using step size = 0.1, we will extend the
nearest node p = (x1, x2, x3, x4, x5) towards
the next configuration q = (α1, α2, α3, α4, α5).
For each step, we take size=0.1 to reach the q.
The extended point is qnew = (α1 − x1, α2 −
x2, α3 − x3, α4 − x4, α5 − x5)/d ∗ step, where
d = np.linalg.norm(p − q) represent the Eu-
clidean distance between p and q. Here, we will
have three different status:“Reached”,“Advanced”,
and“Trapped”. “Reached” implies that by taking
this step, the extended point qnew is within the
bias = 0.1 distance to the goal configuration.
“Advanced” implies that the qnew has not reached
the goal configuration yet. “Trapped” denotes that
the newly found extended point qnew collides with
its links or obstacles.
Thus, if the status is “Trapped”, we will record all
nodes that we extended previously for the tree, and
start another round for extending path towards new
random configuration q. If the status is “Advanced”,
we can continuously extend the nearest node p
towards the random configuration q step by step,
until it either reaches the goal configuration (status
= “Reached”), or is trapped through collision check
(status = “Trapped”).

Fig. 5. RRT algorithm for extending tree towards random config q [4]

(d) path smooth()
The path smooth() function utilize the Short-
cut Smoothing method to shorten the path in
Algorithm2.

After generating a long path for robot arm to reach
the goal from start, we may shorten the path by
picking the shortest path between multiple points.
We set the Maxiter to 50, so it will allows us to
generate random indices p1, p2 for 50 times, ran-
domly within the original path length. And we will

Algorithm 2 Short-cut Smoothing[4]
for i in range(Maxiter) do

p1 ← random(0, path len− 1)
p2 ← random(0, path len− 1)
if p1 < p2 then

if SHORTEN(p1, p2) is success then
p1 is p2’s parent node

end if
else if p1 > p2 then

if SHORTEN(p2, p1) is success then
p2 is p1’s parent node

end if
else

continue
end if

end for

also try to shorten the path using extend tree()
to check if connecting p1, p2 is possible. If the
connecting step is “Advanced”, it will continuously
try extending the tree towards p2, until it has either
“Reached”(success) or “Trapped”. We have tuned
the Maxiter to 50 as this maximum iteration will
narrow down the original path to within about 5
joint positions, which saves enough time for robot
arm to execute through all joint positions to reach
the goal efficiently.

D. State machine
Although we deal with different tasks, a certainty

is that we shall pick blocks from a position and place
it at another location with high precision and accuracy.
Therefore, the mechanism used to pick and place the
blocks are essential.

1) Grasp technique: As our robot arm has only 5
DOF, it can not approach blocks at arbitrary poses. If a
block is close enough to our arm, the arm can approach
from above it and grasp it in the desired manner. Else,
the arm will pick the block, but may not be so through
a desired pose. These scenarios are depicted below.

Fig. 6. grasp in good manner and secondary manner

5

Therefore, our control logic is that, we will try the
’secondary manner’ as the approach mechanism only if
we our ’desired manner’ is not possible. In order to not
disturb blocks before we actually hold it, we make the
gripper to be positioned right above the block before
translating it orthogonal to the board and picking the
block. After this step, we will move the arm straight
upwards, to avoid scrapping the ground with the block
or the gripper.

At the same time, the block detections can have some
errors about the position and pose of the blocks. As a
result, our gripper may not grasp the blocks at the center
but on one side. To solve this, we catch blocks in 2 steps
and are termed as align step. Firstly, we pick the block.
We release the gripper, go up and rotate the gripper by
90 degrees. We then catch the block again. This will
reduce the error along the horizontal axis and vertical
axis separately.

2) Place technique: Place technique is almost the
same as grasp. We place first and then apply the align
step. Besides, when we place, the position is just con-
sidered as a rough reference. Our arm will gradually go
down, and when the torque in the third servo is large(200
more than that when it started to go down), we assume
to have reached the right position.

3) Task1: In task one, we are given random blocks
placed in the positive half plane, and our mission is to
drop small blocks to the left, and big ones to the right
of the arm, in the negative half plane. Our logic is as
shown below:

Algorithm 3 logic for task1
set place in negative half sphere to place blocks
while time is not over do

detect blocks
sort blocks in order by distance
for each block do

if block is in negative half sphere then
continue

else
catch it and place it to the right place
renew the place to place blocks

end if
end for

end while

4) Task2: In task two, we are given random blocks in
the positive half plane and our mission is to stack them
up vertically. We repeat steps of task1, except that we
place all blocks on the right side. Then, we pick them
and stack them up in order. The location to drop blocks
will be revised each time.

5) Task3 and 4: Task3 and Task4 are almost the
same, except that we shall stack in the order of a rainbow

for 4, but sort in 3. Our logic is as shown below:

Algorithm 4 logic for task3 and 4
do exactly what task1 do
set place to stack/line blocks
while time is not over or task is not finished do

detect blocks
sort blocks in order by color and size
for each block do

if block is in stacked/lined then
continue

else
catch the desired block and stack/line it to the
assigned place
renew the place to stack/line blocks by CV
break

end if
end for

end while

6) Task5: In task5, we want to stack big blocks to the
maximum possible height. We do so by stacking a small
tower and a high tower separately and then stacking the
small one onto the high one later.

III. RESULTS AND DISCUSSION

We have completed Task1 to Task5 efficiently during
the competition, with the exception of task2 moving
into overtime, due to errors arising in difficult block
orientation and locations. Repeated tries by the arm to
catch the block, led to the overtime. However, as a high
point, we stacked 15 blocks in Task5.

Although we have done tasks successfully, there were
some potential trivial problems that could be improved.

Firstly, when we carry a block, the position of our end
effector will be lowered by gravity. In general, we set
an offset to the third servo to overcome this but a fixed
offset may not be good enough always. Perhaps a better
offset mechanism should be implemented, as a function
of the pose of the robot arm.

In addition, we set the accelerate-time and moving-
time for robot arm manually. It would be efficient
to assign them based on the length of the path and
distribution of the obstacles.

6

REFERENCES

[1] T. Robotics, “Reactorx-200,” http://support.interbotix.com/html/
specifications/rx200.html.

[2] Kinematics. London: Springer London, 2009, pp. 39–103.
[Online]. Available: https://doi.org/10.1007/978-1-84628-642-1 2

[3] Y. Shen, Q. Jia, G. Chen, Y. Wang, and H. Sun, “Study of rapid
collision detection algorithm for manipulator,” in 2015 IEEE 10th
Conference on Industrial Electronics and Applications (ICIEA),
2015, pp. 934–938.

[4] S. M. LaValle, Planning Algorithms. Cambridge,
U.K.: Cambridge University Press, 2006, available at
http://planning.cs.uiuc.edu/.

[5] M. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling
and Control. Wiley, 2005. [Online]. Available: https://books.
google.com/books?id=wGapQAAACAAJ

